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TECHNICAL NOTE 4258

A NUMERICAL METHOD FOR EVALUATING WAVE DRAG

By Maurice S. Cahn and Walter B. Olstad
SUMMARY

A numerical method for evaluating the Von Kédrmén wave-drag equation
has been developed and epplied to the calculation of wave drag for sev-
eral bodies of revolution. Results indicated good agreement with the
exact solution. Hufficient asccuracy of wave drag was obtained by using
a simple numerical method to determine the second derivatives of the
area distributions. ' :

It is concluded thet the numerical method willl yield results well
within the accuracy of linearized theory. The method may be set up
easlly for & desk calculator or an electronic computer.

INTRODUCTION

Area-rule concepts (ref. 1) have shown that the wave drag of a
configurstion is related to the wave drag of an equivalent body of
revolution. As a result, much interest has been directed toward the
evaluation of the wave drag of bodies of revolution. The most common
method of approach has been to evaluate the Von Kérmén wave-drag for-
mula with a Fourler series analysis. This method is outlined in refer-
ence 2, It would seem that a method of numerically evaluating the double
integral in the Von Kérmén equetion might, in some cases, be more useful
to the engineer., Such a method is devised and presented in this report.

SYMBOLS

Wave drag

Cp wave-drag coefficient,
aS¢

D wave Grag

i index of summation in x
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J index of summation in x - §

Ly defined by equation (k)

1 bedy length

M free-stream Mach number

n number of terms of summation

q dynamic pressure

r body radius

R body maximum radius of configuration 1
S body cross-sectionsal area

S body frontal area of configurastion 1

X coordinate of longitudinal exis of body
B=\’M2-l

3 auxiliary coordinate of longitudinal axis of body

Primes indicate derivatives with respect to the argument.
ANATLYSIS

The Von Kérmén wave-drag equation for a body of revolution as given
in reference 3 can be presented in the form

1 nX
-g= -% j;fo s"(x)8"(g)log(x - g)dg ax (1)

The integrsl in equation (1) may be considered as the volume between
a surface determined by the function 8"(x)s"(g¢)log(x - ¢) and the
X,t plane. The volume is bounded laterally by the planes § =0, x =1,
and x = g, as shown in the following sketch:
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Mong any line x - ¢ = Constant, the term log(x - &) 1s a constant.
Thus, if the integration proceeds first slong this line, the term
log(x - ¢§) may be taken outside of the integrel sign. The second
integration is then performed with respect to (x - g) from 0 to 1.

From these considerations, & numerical solution to equation (1) can
be somewhat simplified. The x,t plane can be divided into & number of
finite dlagonal strips of equal width, and values of S"(x)s"(¢) =along
the center of each strip can be compubted. These values then are summed
along the strips for which x - § = Constant and multiplied by the
value of log(x - ¢) 1integrated across the strip. Using the integrated
value of 1log(x - &) over the strip rather than the value of the loga-
rithm itself avoids the problem of the singularity on the line x = &.
It should be noted here that the summation for the line x =§ is
divided by 2 so that no areas outside of the limits of the integration
are included. Finally, the products of the summation along each line
for which x ~ ¢ = Constant and the integrated value of log(x - g)
are summed to cobtain the solution. This integration is thus described
by the following expression:

=

n-

n-1
2
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where 8§ = S"[%(i + ;)] for the exasmples herein, and

Ly = % log(x - g)a(x - &)

[ Bpoe(o-2) - o - s -

Since 8'(0) =8'(1) = 0,

1 |
j;/;x s"(x)8"(¢)de dx = %Es'(z) - s'(o)]2 = 0

2)] + (log L 1)

NACA TN 4258

> (3)

o

Therefore the constant term (log % - l) in LJ can be eliminated, with

the result that

Ls

(4 Zposfo+3) - (

When J = O, Lp log %.

-

(k)

Equation (4) is independent of both the number asnd the size of

increments and can be used whenever 8£'(0) = 8'(1) = 0.

Values of the_

function LJ for J from O to 99 are presented in table I.

When 8S'(1) is not equal to zero, the term (log % - 1) must be
retained in Lj, and additional terms must be used with Von Kérmén's

eguation (see ref. 4). These terms are

. 2
ES (18 log 2 +
2x pr(1)

. 1
S,(f) fo s"(x)1og(1 - x)dx (5)

The integral in equation (5) can be evaluated with a single numericel
sumation by utllizing the information alresady obtained in the evalua-

tion of equation (1).
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DISCUSSION

In order to determine the accuracy of this numerical method, the
wave drag of an analytical body of revolution was computed by this

method, with the %-and %u-axes each divided into 40 equal increments,

and by analytic integration of Von Kérmén's equation. The shape of
the analytical body (configuration 1) was gilven by the following

expression:
£=u(-"5 _(5)2
== 4E) -G

In order to test the accuracy of the numericel procedure, exact values
of the second derivative of the area distribution S" were used. The
value of the wave-drag coefficient obtained by the numerical method was

42.648(%)2 as compared with the exact value of h2.667(2%)2, a difference

of 0.045 percent. A layout of the celculations involved 1n the numer-
ical method 1s presented in table II.

The wave drag for configuration 1 was also determined numerically
by using 100 increments. Again, exact values of S" were used. The
value of the wave-drag coefficient obtained from these calculations was

u2.523(§z‘.)2, & difference of 0.337 percent from the exact value.

In prectical epplications of the numerical method, the exact values
of the second derivative of the area dilstributions would not be avail-
able. In fact, the exact area distribution is not generally known.
Thus, evaluation of the second derivative by various numerical proce-
dures may lead to considersble error. These errors, in turn, may have
a large effect on the accuracy of the numerical method for evaluating
wave drag. In order to determine this effect, three additionsal bodies
of revolution were developed for which the exact values of S" were
known. These bodles have large variations of curvature of their ares
distributions in order to provide a severe test. Conflguration 2 wsas

obtained by adding 0.25{|1 + cos lOn(% - 0.511 for 0.4 < %~§ 0.6 to
the nondimensional area distribution of configuration 1 (the parabolic
body of revolution described previously). Configuration 3 was obtained

by subtracting this term from the nondimensional area distribution of
configuration 1. Configuration 4 was obtained by adding

0.25[1 + cos 1%(% - o.u)] for 0.3 € %_g_ 0.7 to the nondimensional
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ares distribution of configuration 1. These ares distributions (see
fig. 1)} were plotted to a scale commensurate with the accuracy of the
areea distribution of a typlcal wind-tunnel model. Values of the second
derivatives were then obtalned by plcking values of area from the curves
and substituting them into the formula

sy = Si-1 = 251 + 8441
(1/n)2

where n = 100. A comperison of these approximate values of 8" with
exact velues 1s presented in figure 2 for configuration 3. Values of
wave-drag coefficient were computed for the four bodies by the numerical
method (for 100 increments) by using first, the exact values of 8",

and second, the approximate values. A compsrison of the results is
shown in the following table:

cp for -
Configuration Exgﬁt Apprcg%mate dﬁ?ggizice
1 42 523(%)2 u2.655(%)2 0.31
2 529.23&(%)2 325.815(%)2 1.04
3 503.255(%)2 296.8&8(%)2 2.12
L 642.438 %)2 6&5.9&9(%)2 .55

Desplte the relatlvely large errors in some of the individual
approximate values of 8" (see fig. 2), the values of wave-drag coeffi-
cient computed from these values were in close agreement with those com-~
puted from the exact values of S". These results are not surprising
when it is considered that the approximate values of S" form a set of
exact values of the second derivative of an area dlstribution which
differs little from the original erea distribution. The differences
between the two area distributions will be of the same order of msgni-
tude as the accuracy to which the original area distribution is kmown.
Obviously the wave drag determined by these two area distributions will
be approximately the same. Any differences will be well within the
accuracy by which the theory can be expected to apply to a practical
example.

-
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The examples eited in the previous parsgraphs indicate that
100 increments are sufficlent to yield good accuracy in the evaluation
of wave drag. A larger number of increments might be used for an area
distribution which has even more rapld changes in shape than those
studied herein. However, it should be kept in mind that a body with
such an area distribution will not permit linearized flow approximation,
and equation (1) should not be expected to yield good agreement with
experiment, In fact, if the slope of the area distribution is discon-
tinuous, Von Kérmén's equation indicates an infinite value for the wave
drag, which obviously disagrees with experimental evidence.

It should be noted that the technique developed herein can be
readily adepted to the evalustion of the wave drag of 1ifting configura-
tions (see ref. 5) and to vortex drag of a lifting surface in subsonic
or supersonic flow (see ref. 4).

CONCLUDING REMARKS

A numericael method has been developed for evaluating Von Kérmén's
wave-drag equation. The method may be set up easily for a desk calcu-
lator or an electronic computer and will yield results well within the
accuracy of linearized theory. A simple numerical method was used for
determining the second derivatives of nonanalytic area distributions
for four bodies of revolution, Results of calculations made by using
these spproximate derivatives and by using exact derivatives yielded
differences in wave drag on the order of 2 percent for a practical case.

The numerical method developed herein can be adapted to the evalua-
tion of the wave drag of lifting configurations and to the vortex drag
of a lifting surface in subsonic or supersonic flow.

Langley Aeronsutical Leboratory,
Netional Advisory Committee for Aeronautics,
Langley Field, Va., February 28, 1958.
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TABLE I.- VALUES OF THE FUNCTION L,j

FOR J FROM O TO 99

J Lj J Lj J Lj
0 -0.3470 34 4 .5265 68 5.2191
1 9547 35 | 4.5552 69 | 5.2346
2 1.6825 36 k.5835 70 5.2481
3 2.0939 37 4.6109 TL 5.2631
L 2.3837 38 4.6377 T2 5.2767
5 2.6078 39 4.6635 73 | 5.2898
6 2.7906 Lo 4 .6888 Th 5.3045
T 2.9451 1 L. 7135 75 5.3172
8 3.0788 Lo 4. 7376 T6 5.3%09
9 3.1967 43 L. 7613 7 5.3440
10 3.3022 Lk 4. 7843 8 5.3567
11 3.3975 b5 | 4.8065 79 | 5.3696
12 3.4846 46 4. 8286 80 5.3820
13 3.5648 L7 4 .8503 81 5.3940
1L 3.6387 48 %.8710 82 5.4071
15 3,7080 49 L.8919 83 5.4190
16 3.7724 50 k.9120 8l 5. 4304
17 3.8331 51 k.9319 85 5.4431
18 3.8903 52 k.9512 86 5.4537
19 3.9443% 53 . 970k 87 5.4664
20 3.9956 54 4 .9890 88 5.4770
21 4. o455 55 5.0072 89 5.4890
22 4.0909 56 5.0255 20 5.4997
23 4.1355 57 5.0Lk28 91 5.5109
2k 4.1779 58 5.0609 92 5.5218
25 4.2189 59 5.0776 93 5.5323
26 4.2579 60 5.0939 ok 5.5435
27 4 .2958 61 5.1113% 95 5.5542
28 k.3322 62 5.1272 96 5.5637
29 L .367Th 63 5.1429 97 5.5748
30 4. 4010 6L 5.1585 98 5.5855
31 L. 4342 65 5.1747 99 5.5950
32 4. 4656 66 5.1895
3% 4.496% 67 5.2050
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TABLE II.- SAMPLE CALCULATIONS FOR PARABOLIC BODY OF REVOLUTION
[In making the calculations values of §" with seven decimal
places ware used, but for convenience of tabulation thoy have
been rounded to four places}
8%(1)8"(x)
" (x]
3 1m) | 4ml { du@ | 1m3 § 1=k | 1n3 | 105} 1a7 | 4=8 1w9 im0 f dwll | jm}d | iml3 | iwlh | 1«12 | 1216 2l | 1R
8"(8) \Rses9]. 7854 | .6u8n|.5209] oos] . 2881] 1838 ] .0859] -.00%1 |-.0866] -, 1626 ~. 2291 |- . 2691 ~. 5416 | - . 3866] ~.hzb1 | -.AoMY 4516 - .5 768]
33 837k | 7258 | 600k | 482K | . 3T12] 26T . 1609 .0T96| -.00381=.0802) - INPE | . 212" |~ . DETT} = . 3263 ~. 35O . 5927 | =, 20k, ERL i PNTILE
3 .61381.30801 .5081 | . 5141, 22% <1k57}.06T3] ~ 0032 -.o,‘sra 1266 |-.1795 -.ﬁ - ~. 3008 |-.33522|-.3357 -0 5082 = 5T
37 &203].5578).26001 . 1870} . gﬁg - - ~ 2048 1-.1885 |~. - - =270 |- =, 5187 ~. 309¢
36 27k {20891 .1503| . o ~0021 |- .04%1{ - .0BK2 1~ 1193 [~ . 1506 | - . LTT9} - . 200k | . 220G - . 2% - - k83
35 .1608{.1156 0735 [ 0345 | ~. 0016 |-.0347T] -. 0648 | -.0R1B | -, 1356] -. 1365 ]~ . 1830} ~. 2700 |-. 2821 - 1971 (-, 1902
3h .0832{.0529 {028 -.0012 |-~.0250] - .0%66 1. 0661 | - .08 (- .0365 |-. 1115 {~. 1225 .21 310 . 1h18]..1%
33 0336 |.01561-. r.wfg =026 |~.0420 |-.0930 {- .0627 |- .0TCP -.om -.0853 -.g?m -. 0
52 -QU7h }=.0003 |- =.0339 |-.0197 |- 0243 |- .025% |~.0332}-. -.0390 -.oh221..0h%0
31 [} . +000k om uo% .0012| .00k} 0016 og‘:}; .gg;.g gs: &o}g
0 0075| .0 0198 | .02 .0296| .03351 .0: . K .
29 K 0570 %’r .mm ggg .moﬁao 'mho D75 .mm
28| BB . . . . . .
& «0836 | .0987| 11T} 1236 | (1503 L1023 1 L1378
22 J11587| 1320 | JARAB § L1551 J6791) 1MW
25 Aok | 16591 J1TSS £1900 1 L2862
2% X 1926 2083 | Jp021
23 2062 .:ﬁ! 2254
22 L2553 | 21
L16| 2508
2331 2578
2433 .2578
16| 2%
M
gn-l n-1
5w
-2 ) 5y s,
=0 im}
2291 tharefores
"9 ro8ss
8] —-ook1 ¢p = ua.sne(%)a
7] 0839 1
€] 185k
5| .268%
13 .500920
3 -
2 6&83 .
1| .85k .
0f 9299 . 1
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1.6 o Configuration 2
A Py Configuration 4
(.4 J\ /‘&/ Configuration |
I / ) }& —iConfiguration 3 |
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Figure 1l.- Area distributions for four bodies of revolution.

gGeh NI VOVN




WA ‘PISLL L8)3uT] - TOVN

BOOT

200y ?(

Y
o |
AR

S* (Im)? 60,0 N
0 ° Tﬁﬁ f \ r?' o | ® i )
g g ef] Aﬁ P
// \\
o G
-20
\\.
o} (-]
300!
0 JO .20 .30 40 S50 60 .70 .80 .90 LOO
x/1

Figure 2.- Comparison of exact and epproximate values of the second derivative of the area dis-
tribution of configuration 3. The solid line indicates the exact values of S". The symbols
indicate approximate values of B8".
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